A Tight Semidefinite Relaxation of the MAX CUT Problem

نویسندگان

  • Hongwei Liu
  • Sanyang Liu
  • Fengmin Xu
چکیده

We obtain a tight semidefinite relaxation of the MAX CUT problem which improves several previous SDP relaxation in the literature. Not only is it a strict improvement over the SDP relaxation obtained by adding all the triangle inequalities to the well-known SDP relaxation, but also it satisfy Slater constraint qualification (strict feasibility).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strengthened Semidefinite Programming Relaxations for the Max-cut Problem

In this paper we summarize recent results on finding tight semidefinite programming relaxations for the Max-Cut problem and hence tight upper bounds on its optimal value. Our results hold for every instance of Max-Cut and in particular we make no assumptions on the edge weights. We present two strengthenings of the well-known semidefinite programming relaxation of Max-Cut studied by Goemans and...

متن کامل

Approximation Bounds for Max-Cut Problem with Semidefinite Programming Relaxation

In this paper, we consider the max-cut problem as studied by Goemans and Williamson [8]. Since the problem is NP-hard in general, following Goemans and Williamson, we apply the approximation method based on the semidefinite programming (SDP) relaxation. In fact, the estimated worst-case performance ratio is dependent on the data of the problem with α being a uniform lower bound. In light of thi...

متن کامل

New bounds for the max-k-cut and chromatic number of a graph

We consider several semidefinite programming relaxations for the max-k-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-k-cut when k > 2 that is applicable to a...

متن کامل

A sub-constant improvement in approximating the positive semidefinite Grothendieck problem

Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we describe a polynomial-time algorithm for the positive semidefinit...

متن کامل

Knapsack-Based Cutting Planes for the Max-Cut Problem

We present a new procedure for generating cutting planes for the max-cut problem. The procedure consists of three steps. First, we generate a violated (or near-violated) linear inequality that is valid for the semidefinite programming (SDP) relaxation of the max-cut problem. This can be done by computing the minimum eigenvalue of a certain matrix. Second, we use this linear inequality to constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Optim.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2003